Nested Sequential Monte Carlo Methods

نویسندگان

  • Christian A. Naesseth
  • Fredrik Lindsten
  • Thomas B. Schön
چکیده

We propose nested sequential Monte Carlo (NSMC), a methodology to sample from sequences of probability distributions, even where the random variables are high-dimensional. NSMC generalises the SMC framework by requiring only approximate, properly weighted, samples from the SMC proposal distribution, while still resulting in a correct SMC algorithm. Furthermore, NSMC can in itself be used to produce such properly weighted samples. Consequently, one NSMC sampler can be used to construct an efficient high-dimensional proposal distribution for another NSMC sampler, and this nesting of the algorithm can be done to an arbitrary degree. This allows us to consider complex and high-dimensional models using SMC. We show results that motivate the efficacy of our approach on several filtering problems with dimensions in the order of 100 to 1 000.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Multivariate Asymptotic Distribution of Sequential Chi-square Statistics

The multivariate asymptotic distribution of sequential Chi-square test statistics is investigated. It is shown that: (a) when sequential Chi-square statistics are calculated for nested models on the same data, the statistics have an asymptotic intercorrelation which may be expressed in closed form, and which is, in many cases, quite high; and (b) sequential Chi-square difference tests are asymp...

متن کامل

Sequential Ordinal Modeling with Applications

This paper considers the class of sequential probit models in relation to other models for ordinal data. Hierarchical and other extensions of the model are proposed for applications involving discrete time (grouped) survival data. Computationally practical Markov chain Monte Carlo algorithms are developed for the tting of these models. The ideas and methods are illustrated in detail with a real...

متن کامل

Evaluating Quasi-Monte Carlo (QMC) algorithms in blocks decomposition of de-trended

The length of equal minimal and maximal blocks has eected on logarithm-scale logarithm against sequential function on variance and bias of de-trended uctuation analysis, by using Quasi Monte Carlo(QMC) simulation and Cholesky decompositions, minimal block couple and maximal are founded which are minimum the summation of mean error square in Horest power.

متن کامل

Sequential Monte Carlo Methods for Multi-Object Tracking

This document provides an overview over literature relevant to (multi-) object tracking based on sequential Monte Carlo methods. Besides milestones like [IB98a] (CONDENSATION) or [DdFG02] (sequential Monte Carlo methods), there are also some less fundamental articles, presenting some original ideas or extend the basic algorithms in a remarkable way. The reviewed articles are grouped in two majo...

متن کامل

Structural Estimation Using Sequential Monte Carlo Methods

0501, 0463) Structural Estimation Using Sequential Monte Carlo Methods

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015